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Abstract 

The period integrals of non-singular complex algebraic curves in C 2 are shown to satisfy a set of 
polynomial relations that can be used to formulate the corresponding the Picard-Fuchs equations. 
Their derivation employs elementary mathematical techniques that have also found application in 
the context of Seiberg-Witten theories. © 1999 Elsevier Science B.V. All rights reserved. 
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1. I n t roduc t ion  

Effective N = 2 supersymmetric Yang-Mil ls  theories in four dimensions have been the 

subject of great attention recently [ I ]. These models, also called Seiberg-Wit ten (SW) the- 

ories, exhibit a wide variety of  interesting physical and mathematical properties. In many 

SW theories the moduli space of  physical vacua in the Coulomb branch coincides with 

the moduli space of  a certain class of Riemann surfaces Z'~. In their simplest examples, 

these Riemann surfaces are hyperelliptic [2]. Such is the situation when one considers 

a simple, classical gauge group, with or without matter hypermultiplets in the defining 

representation. Some configurations with classical gauge groups given by the product of 

several simple factors, or with matter hypermultiplets in representations other than the 

fundamental, are known to be described by non-hyperelliptic Riemann surfaces, and have 

been studied recently in the context of geometric engineering 13,4] and M-theory I5-7]. 

In other cases, the moduli space of  vacua does not correspond to a family of  Riemann 

surfaces, but to some different geometric manifolds [3]. In this paper we will restrict 
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ourselves to those cases that correspond to Riemann surf'aces, although not necessarily 

hyperelliptic. 

An essential ingredient in these constructions is the SW differential and its period inte- 

grals along (a subset of) the homology cycles of g'~, [ 1,2]. In principle, a knowledge of these 

period integrals amounts to the complete solution of the effective theory in question, as given 

by the full quantum prepotential f ' .  Different approaches have been undertaken in order 

to compute f .  One of them makes use of a set of partial, second-order differential equa- 

tions (with respect to the moduli) satisfied by the periods of the SW differential [8,q]. The 

differential equations just mentioned are known as Picard-Fuchs (PF) equations. The)' can 

be traced back to a first-order system of differential equations satisfied by the holomorphic 

differentials on the Riemann surface, that also goes by the same name of  PF equations. The 

latter have been known for some time in the mathematical literature [ I 0,1 1 ] as the cquations 

governing the variation o fa  Hodge structure on the manifold. It is therefore of some interest 

to study the properties of such period integrals without regard to their particular physical 

origin. This may help to highlight their wide range of  applicability. For example, a number 

of properties of hyperelliptic period integrals, related to some of those reported here. ~erc 

observed in [12] in the (apparently unrelated) context of  conlkmnal field theory. We believe 

this may be an interesting offshoot of SW models that connects with fields such as clas- 

sical Riemann surface theory [13], string theory on general algebraic curves [14], special 

geometry, mirror symmetry and Calabi-Yau manifolds (see [15] and references therein ). 

In previous work [16], a technique has been developed in order to give a systematic 

derivation of the PF equations corresponding to those SW models that can be described by 

hyperelliptic Riemann surfaces. This method is based on a set of algebraic relations satis- 

fied by the periods of the SW differential on the corresponding surface. In this paper we 

formalise the method outlined in [161 and extend it to an arbitrary (non-singular) Riemann 

surface, be it hyperelliptic or not. We provide some technical proofs omitted in [I 6I, while 

recasting our presentation in a way that is independent of its possible connections with SW 

theory, or any other applications. We begin in Section 2 with a detailed treatment of the 

hyperelliptic case, where an expression is given for an arbitrary modular derivative of the 

period of an arbitrary holomorphic differential on X',. Section 3 deals with the same problem 

in the non-hyperelliptic case; although the technical details are more involved, the metht~d 

is the same as in the hyperelliptic case. Some concluding remarks are made in Section 4. 

Throughout our analysis, ui will denote an arbitrary modulus (or set of moduli) whose 

significance may vary. Thus, e.g., in the context of  SW models, specifying a value for u, 

is equivalent to determining a physical vacuum state of a certain effective N = 2 super- 

symmetric Yang-Mills theory. Alternatively, our techniques would apply.just as well to the 

mathematical problem of varying a conformal structure on Z'~.. 

2. Hyperelliptic Riemann surfaces 

I.et p(x ) be the complex polynomial 
2~,, ~ I 2 g +  I 

l,(x) = I-I (-~ - , , t ) =  ~ ~/~ :~'-'-i  • - .  

/ : 1  j = ( )  

(2.1) 
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where g 
discriminant A of  p(x) is the function of  the roots of  p(x) given by 

2g+l 
A = I ~  (el--en) 2. 

] <11 

Assume A :fi 0, i.e., el ~ e,, if l ¢ n. Then the equation 

y2 = p(x) 
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> 1. The coefficients Si are the symmetric polynomials in the roots et. The 

(2.2) 

and the differential equations they satisfy, will be our focus of  attention. In order to derive the 

latter, a generalisation of  equations (2.4) and (2.5) is needed. Let 7/- denote the non-negative 

integers and ½7/- the negative half-integers (i.e., the set - 1 / 2 ,  - 3 / 2  . . . .  ). 

Consider/z ~ ~Y- and n ~ 7/+, and let a given I-cycle y E Hi (Z'~) be fixed. Define 

the ~t-period o f x  n along F, denoted by S2(,u)(y), as 

f Xn $2~/~)(y) := (-I) / '+IF(Lt  + !) --plL+l(x--------~dx" (2.6) 

Y 

In Eq. (2.6), F stands for Euler's gamma function. The overall normalisation factor ( -  I ) '  + I 

F(/_t + 1) has been included for convenience. The usual period matrix of  Z' e (in the sense 

of  Eq. (2.5)) is obtained when we set # = - 1/2 and let F run over a basis of  Hi (Z" x) [ 131, 
but lbr the moment, /z will remain an arbitrary negative half-integer. One can easily prove 

that ~,,, (y) is well defined as a function of  the homology class of F. 
Let F E Hi (~'x) be given. Then the periods $2,1,')(F) satisfy the following recursion 

relations: 

'g~l 
12),p ) (y)  = 1 

n + l - ( l + ~ ) ( 2 g + l )  Z JsJS2( '+l)  " " n+2g_l_jl, y) ,  (2.7) 
j =0 

defines a family of  non-singular hyperelliptic Riemann surfaces of  genus g, Z e. Each one 

of  them is a twofold covering of  the Riemann sphere S 2 branched over the roots et, plus 

over the point at infinity. Choices of  the roots et (or, alternatively, of the sj) such that 

the discriminant vanishes will produce singular surfaces, in that some of the l-cycles of  

the homology Hi (E  e) will collapse to a point. We will assume A(sj) ~ 0 in all what 

follows. 

The differential l-fornls on Z'e 

dx 
w,, = x" - -  n = 0, i, 2 . . . .  (2.4) 

Y 

are holomorphic for 0 < n < g - 1, while they are meromorphic with vanishing residues 

lor all n > g. Let y 6 Hi ( E  e) be an arbitrary l-cycle. The period integrals 

S2,, (y) = f w,,. (2.5) 

), 

(2.3) 
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and 

n ] y  + ~ ( × ) =  
1 

n - 2 g - ( 1  + l z ) ( 2 g + l )  
2g+ I 

× E [ ( 1  + /1 ) (2g  + i - j ) -  (n - 2g)]s)F2,(/ '~i"(y).  
j =  I 

(2.8) 

In order to prove them, we observe that from Eq. (2.1) one can write 

1 O p ( x )  - 
x2~--  2 g + l  L ~ x  J = ~ l ( Z g + l - J ) ' % t 2 ' ~ - i  . (2.9) 

Multiply Eq. (2.9) by x n / p ~ ' - Z ( x )  and take its line integral along ~'. Upon integration by 
parts and dropping a total derivative, one obtains 

.(-2 (~  + I 
n+2. )(g) -- 

n F2u~ ~ , 1 
2gT-F 1 " - I tY}  2g + 1 

2g~ I 
:"S . . (2 ( I t 4 " l )  " " x E (2g + 1 - - , / j , )  ,,+2~_i(],'~. (2.10) 

. j= I 

Solve Eq. (2.10) for ~2 ~"~ n-I  (Y) and shift n -+ n + 1 to obtain 

..c2f ~(y) = - -  

Next consider 

E 
2g+l 1 • . .Q(p +1 ) 

+ E ( 2 g + l - J ) S i  n~-2~+l-j(Y) • 
)=1 

(2.11} 

X n p(X)  dx  
- ( 1  + / ~ ) ~ / ~ ) ( y )  = ( -  l)~ '+2F(/l  + 2) pj,_2(X--------- ~ 

Y 
2g+ I 

__  f f ~ ( l ~ + l  ) $". ( - ~ ( i ~ +  l }  
-- n~-2~+l(Y) + E 'J n*2,~- t - i ( g  )" 

j=l  

(2.12) 

from where 

2g-I  

$-2(1~- I ) ,,+28-1(Y) = - ( 1  + u ) S 2 f l ( y )  - ~ s" S2 u ' -I~ , j  n_2g+ i _.i ()/). ('2_.13} 
j= l  

Substitution of Eq. (2.13) into (2.1 1) produces the recursion relation (2.7). Finally, the recur- 
sion (2.8) is obtained by substitution of Eq. (2.7) into (2.13) after shifting n ~ n - 2g - 1. 

Two observations are worth making. First, the above holds for any g c ~7/- and any 
n e 7/+. For such values of g and n, the denominators of (2.7) and (2.8) never vanish. 
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Second, it ceases to hold on the zero locus of  the discriminant, i.e., when A(sj) = 0. This is 

a consequence of  the following decomposition [ 171 for the discriminant A (sj) of the curve: 

~p(x) 
A(sj) = a (x )p ( x )  + b(x) ~kx (2.14) 

where a(x)  and b(x) are certain polynomials in x. We have A(Si) = 0 if, and only if, 

both p(x)  and Op(x)/Ox vanish simultaneously. In this case the derivation of  the recursion 

relations (2.7) and (2.8) breaks down. 

We define the basic range R to be the set of  all n ~ ~_- such that 0 < n < 2g - !. Let 

Z[sj] be the ring of  polynomials in the sj with complex coefficients. 

The set of all periods ,(2,~ j~+l ~(9) as n runs over Y_-~, when both/a and g are kept fixed, 

defines a module over Z[sj]; let it be denoted by .M~I~+J)(V). Then Eqs. (2.7) and (2.8) 

prove that d imAd~" - I I (y )  = 2g. This follows from the observation that Eq. (2.8) will 

express any S2~ j '+l~(9), where n > 2g, as a certain linear combination of  o l ~ - I  - , , ,  I(y),  

with m < n, and with coefficients that will be certain homogeneous polynomials in the sj. 

Repeated application of  this recursion will eventually allow to reduce all terms in that linear 

combination to a sum over the periods of the basic range R. The S2/J'+ll(9), where n 6 R, 

will be called basic periods of .M ~l' 4- I~ (Y). 

The two modules :~lt '~(9) and jk4~I'+ll(9) are clearly isomorphic. We can make this 

isomorphism more explicit as follows. Let ,f2,1J' ~ (y) and S2/,I '~- j~ (Y), where both n and m run 

over R, be bases of  A4 I~)( 9 ) and .M I¢~'- I I( 9 ), respectively. Arrange them as column vectors 
S21/,i (S-21/,~ ol i ,  i o~t,I ~t and £2 ll~+ll = (..Q(0/`+1) ¢91it-I) r 2  ( t t - i ) ~ t  For 

"'1 . . . . . . .  2g--I j '~"1 . . . . .  2g-I ~ • 
notational simplicity we have suppressed the dependence on 9. Now, for every ~t 6 ~/7- 

there exists a unique matrix M (t'~ such that 

,Q(I~I = M~I~IQII~+I). (2.15) 

The entries of  M Its) are certain homogeneous polynomials in the s]. M II'~ is non-singular 

when A(sj)  ~ O. 
The statement (2.15) can be proved as follows. The existence and uniqueness of M It' ~ are 

a consequence of  Eqs. (2.7) and (2.8). Taking n 6 R, the period .¢2), ~' ~ can be expressed as a 

linear combination of  some S2~,~ ~ + ~, as per Eq. (2.7), with certain homogeneous polynomials 

in the .~i as coefficients, but with m not necessarily in R. Then use Eq. (2.8) as many times 

as necessary, in order to pull the subindex m of --m°~'+~ back into R. The coefficients 

in this expansion are certain homogeneous polynomials in the sj, explicitly computable 
from Eqs. (2.7) and (2.8). They define the rows of  the matrix M u'~ as n runs over R. The 
invertibility of  M I~) when A(Sj) ~ 0 Ibllows from the fact that 32~ ~'~ is a basis of  ,'k4 It'~ 

when n 6 R and 32,~ '+t)  is a basis of.A//t~'+~l when m 6 R. 

As a function of  the sj, we have proved that det M I~'l can only vanish when A(sj) = 0. 

The entries of  M I~'l are polynomials in the sj, hence det M I~'~ will also be a polynomial 
in the sj. Decompose A(sj) into irreducible factors. Up to an overall complex constant, 

det M u'~ must therefore decompose as a product of  exactly those same factors present in 
the decomposition of  za(s)), possibly with different multiplicities (eventually with zero 
multiplicity, i.e., A(s]) might have more zeroes than det M ~ ) .  
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Next we consider derivatives of periods. As a consequence of Eqs. (2.6) and (2.1) we 

have, after commuting the derivative 8/Ss j  past the integral sign, 

Os i ,-2.~+ I - j "  (2.161 

Now take n 6 R in Eq. (2.16), and use the recursion relation (2.8) as many times as necessary 

in order to pull the subindex n + 2g + I - j back into R. As n runs over R, the right-hand 

side of  Eq. (2.16) defines the rows o fa  (2g, × 2g)-dimensional matrix, D ~l'i ~" In matrix form, 

Eq. (2.16) reads 

- D uL~ a"2 c1'-I~ (2.17) 
#s I J - 

Since Eq. (2.15) can be inverted when A(s  i) ~ O, we have 

itS2cl ~1 
-- D! ~ (MU~) -I  a'2 u~l = S I~) a'2 lug. (2.18) 

it.s, / / J 

where we have defined S~"' = D) ''1 (M u ' ' ) -  I. We finally set/z = - 1  / 2 in order to obtain 

the PF equations of  the hyperelliptic Riemann surface (2.3): 

i) ~l-1..'2~ S!-1,/2~ C21-i,2 (2.19) 
b)si  i 

They express the derivatives of the basic periods with respect to the sj, as certain linear 

combinations of the same basic periods, The 4g 2 entries of  the matrix Sj-i,:2, are certain 

rational functions of the sj, explicitly computable using the recursion relations above. Fi- 

nally, from a knowledge of  the coefficients sj as functions of  the moduli ui, application of 

the chain rule and Eq. (2.19) produces the desired PF equations 0£2/Oui. 

To close this section, we would like to observe that results similar to those established here 

have been reported in [12], although using different techniques. An important difference in 

our approach lies in the fact that we have chosen to place one branching point at x = vc. 

As the multiplicity of  the branching is always maximal (and equal to 2) when the surface is 

hyperelliptic, placing one branching point at infinity is no stringent condition at all. One can 

always Moebius-transform the sphere S 2 in order to ensure that infinity becomes a branching 

point with maximal multiplicity. In turn, this guarantees that the family of  differentials of 

Eq. (2.4) has vanishing residues everywhere on Ze. The issue of residues at infinity and the 

branching properties at this point will be relevant in Section 3, so let us briefly review our 

argument. 
On the points of Z e that lie at finite distance, the differential o~n can only have zeroes. 

Whatever poles co,, may have, if any, will be at infinity. This can be seen as follows. At finite 

points, the poles of w,, will be at the zeroes of the denominator y, that is, at the branching 

points. However, at the latter one can always use Eq. (2.3) to reexpress w,, as 

= 2x"  dv w,, " . (2.20) 
p ' (x)  
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with p'(x) # 0 because .4 # 0. This proves the analyticity of  to,, away from infinity. For 

n > g, to,, does have poles at infinity, but with zero residue. This follows from the fact [13] 

that, for all n, Y~'I, Resv (to'') = 0, where the sum extends over all points p c ~'g. On the 

other hand, we have just seen that Resr (to,,) can be non-zero only at p = o¢. Since the 

latter has been chosen to be a branching point, we conclude that Res:~ (to,,) = 0 for all n. 

3. Non-hyperelliptic Riemann surfaces 

Let us now consider the complex algebraic curve defined in C 2 by the zero locus of the 

irreducible polynomial 

F(x, y) = ~ pj(x)y ' '-j = po(x)y" + Pl (x)Y ' ' - I  + ' - "  + p , (x) ,  (3.1) 
j =0 

where n > 2, and the polynomial pj(x) is assumed to be of  degree j at most: 

J 
pj(x) = E Sjm X j-re .  (3.2) 

m = 0  

Without loss of  generality we can set po(x) = 1. As in Section 2, we will assume the curve 

(3.1) to be non-singular, i.e., F(x, y), Ft- = OF/Ox and F,. = OF/Oy cannot all vanish 
simultaneously. 

We have already seen in our treatment of  the hyperelliptic case that the behaviour of  

the curve at infinity controls the analytic properties of  the family of  differentials under 

consideration. The same will be true in the non-hyperelliptic case. However, on the non- 

hyperelliptic Riemann surface defined by F(x, y) = 0, the multiplicity at a given branching 

point can take any value from 2 to n. There may, or there may not, be branching points with 

maximal multiplicity n. A Moebius transformation on S 2 can bring x = c~ to lie below 

any given branching point, but this still leaves the multiplicity at infinity free to vary from 

2 to n. As will be justified presently, now we will find it convenient to pick infinity not a 
branching point. A sufficient condition that ensures this property is the following. Consider 
the polynomial Q(t) defined by 

It  

Q(t) = E s j o t n - J  = t" + SlO tn - I  -t- " ' '  + Sno, (3.3) 
j=0 

and assume it has n distinct roots in t. One can then prove [ 17] that L'e has n distinct points 
above x = ~ 6 S 2, and that its genus is 

g = ½(n - l ) ( n -  2). (3.4) 

Obviously not every value of  the genus g can be written as above. One must allow for 
singularities if one wants (3.1) to describe an arbitrary value of  g [ 17]. However, under the 

assumption of  non-singularity we are making one can prove that, after suitable algebraic 
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transformations, every non-singular algebraic curve in C 2 can be cast into the form consid- 

ered a b o v e  [ 1 7 ] .  

Let us now consider the family of differentials on E.e given by 

wi,,, = vJ xm __dx O < m.  O <  j .  (3.5) 

In order to study the analytic properties of  o~j,,, we compute its divisor [coj,,,]. I At finite 

points o~i,,, cannot have poles. We prove this as follows. From d F ( x .  3') = 0. the identity 

dv dx 
- ( 3 . 6 )  

/-', F ,  

and the assumption of non-singularity give an alternative expression form/,,, at the branching 

points, i.e.. at the simultaneous solutions of F ( x .  y) = 0 and F , ( x .  y) = 0. So, at finite 

points, L,.,i,,,, can only have zeroes. Points where x = 0 are zeroes with order m, while points 

where 3" = 0 are zeroes with order j if p, , (x)  = 0. The behaviour at infinity can be easily 

determined from our assumption that it is not a branching point. Then F, has a pole of order 

n - 1 at infinity. Altogether. if the roots of  p, ,(x) are denoted by q, .  the divisor [~)i,,, ] is 

tl £ H 

I c o g , , , ] = j Z q ~ + m  0 1 + [ ( , , - 3 ) - ( j + m ) l Z , . x z l .  (3.71 
~=1 /=1 /=1 

where 01 and ~ t  denote the points on the / th  sheet of Z:~, lying above x = 0 and x = 
S 2 , on respectively. We see that wj,,, has poles at infinity if j + m > n - 3, while it is 

holomorphic if j + m < n - 3. The number of the latter equals (n - i)(n - 2) /2 .  so 

according to Eq. (3.4) they provide a basis of  holomorphic l-forms. 

Following Eq. (2.6). we define 

f vj x m ( I~ )  + l  - 'Qi,,, (Y) := ( - l ) / '  F ( #  + l) (F,)-~-t dx. (3.8) 
/ 

Setting # = 0 we recover the usual period matrix of  Z x. However, as in Section 2, we will 

formally work with an arbitrary # ~ 7/, which we will only set to zero at the very end. 

.f-2(u ~ . .  We intend to derive recursions that relate periods im ~ ' J  with different values of the 

indices j ,  m and /z .  The latter are well defined as functions of the homology class of y 

only if the integrand is residue-free everywhere on Z' x. We saw in the hyperelliptic case 

that a way of avoiding the residues at infinity was to choose it as a branching point. In the 

non-hyperelliptic case treated in this section, choosing infinity not to be a branching point 

causes the differentials wj,,, to develop poles at infinity when j + m > n - 3, possibly with 

non-zero residues. One can also expect residues at infinity when # 4= 0 during intermediate 

steps of  the derivation. 

Let us for the moment assume that infinity were a branching point of  maximal multiplicity 

n. Then from Y~.p Res t, (o9/,,,) = 0 we would conclude Res~  (wi,,,) = 0 for all wi,,,. This 

t In our conventions, zeroes (poles) carry positive (negative) coefficients. 
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would provide us with a residue-free family of  differentials to work with. However, in this 

case F,. would develop a zero of  order n - 1 at infinity, thus invalidating the divisor in 

Eq. (3.7). In fact, computing the divisor [wjm] as above shows that the differentials with 

0 < j ,  0 < m and j + m _< n - 3 would no longer be holomorphic, if infinity were to be 

a branching point of maximal multiplicity n. Similar difficulties can be expected if infinity 

is chosen to be a branching point with multiplicity smaller than n. 

We see that there is an incompatibility between the wj,, of Eq. (3.5) as a convenient basis 

of  differentials to work with, on the one hand, and the requirement of having vanishing 

residues everywhere on L'~, on the other. The hyperelliptic case was an exception, in that a 

particular choice of  branching points avoided this incompatibility. 

To the effect of explicitly exhibiting recursion relations between periods, we will find it 

convenient to work with the differentials of  Eq. (3.5). Next, assuming the polynomial Q(t)  

in Eq. (3.3) has n distinct roots, we conclude that infinity is not a branching point, and a 

useful basis ofholomorphic differentials is obtained when 0 < j ,  0 _< m and j + m  _< n - 3. 

One further simplifying assumption we will make is that 

p ,  (x) = !, i.e.. s,,,,, = S,,,,,. (3.9) 

Once the recursion relations have been established, the passage to a residue-free basis can 

be accomplished as in [ 12]. One considers a family of  normal differentials w~ [ 13] having 

residue +1 at point v~,. on the rth sheet of  Z'e, and residue - 1  at point ~ ,  on the sth 

sheet, while being analytic elsewhere. With the help of  these normal differentials, one can 

remove all residues at infinity by simply subtracting appropriate linear combinations of  the 
rs from O)jm. O)7~ c 
Now let ui be an arbitrary modulus. We would like to compute modular derivatives of  

the periods in Eq. (3.8). Reasoning as in Section 2 one finds 

~ui J'x/ = n -  j . . . . .  (3.10) /=0 m=O ~ q- | OU i "*k~-n-y-  I.l. ,-j-m 

One can again establish a linear relationship between the £2 ~') and the £2 I" + I ), analogous 

to that of  Eq. (2.15), with coefficients that are certain homogeneous polynomials in the Sjm. 
First we use Eqs. (3.1) and (3.2) to arrive at 

f vk X 1 O(/~1 = ( - i ) t~+l  F ( #  + 1) : F, dx 
"'kt (F,.)/,+Z 

--1 ~ j _ - ( # - I ~  
l~--+-I E ( n  -- j)sj,,,J2k+,,_j_l.t+)_,, ,. (3.11) 

j=O m:0 

The right-hand side of  Eq. (3.11)just fails to define a matrix M <t') in the sense of  Section 2. 
High values of  the subindices will first have to be reduced into an irreducible set, i.e., 

into a basic range R, if Eq. (3.11) is to define the M <u) matrix properly. This can be 

done by means of  two recursion relations (analogous to that of Eq. (2.8)) that we now 
derive. 
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From Eqs. (3.1) and (3.2) we can solve for the highest power of v to obtain 

/1 j 

"I' : -- Z E SjItI XJ--I'I yH -J ' 3 . ' 2 }  

/ = 1  m----:O 

Substi tut ing Eq. (3.12) into the period o ~ "  "" k + ,, . /we find 

II j 

~.n.I = -- S/m k-n-/.l-I--m" (3.13) 
] = l m --() 

The right-hand side of Eq. (3.13) reduces the first index with respect to the left-hand side. 

However, this is done at the cost of  increasing the second index. We therefore need an 

independent  recursion that will reduce the latter. 

In order to derive it let us recall that s,,.o = 0 by Eq. (3.9). Then  Q(t) in Eq. (3.3) has 

t = 0 as a s imple root if, and only if, s,,_t.0 # 0. This allows us to identify the highest 

power of x in F, ,  = 32F/Ox3y as the term j = n - 1, m = 0 in the fol lowing sum: 

n i 

F,, = E ~ < "  - / )  <J - m).,',,, . ,"  . . . . .  ' ,'"-J ' 
j=O m=O 

n-I 

- - - - ( n -  l ) s , _ l . 0 X ' - 2 + E ( n - m -  l ) s , , _ l . , , x "  " - 2  
m -  I 

, - 2  i 

+ ~ y ; < ,  - j ) ( / -  , , ,) .~,, ,  .,-/ .... ' , ."-/- '  (3.14) 
j=O m=O 

From here we can write 

$.-2(t~ +1 } (n-- I).';,_I.0 k.l-,-2 

= ( - l ) ~ - 2 F ( / ~  + 2 )  

x dx - -  F~.~. - (n - m - 1).%.. I.,, t ' - ' "  " ? 
( F v ) , + ?  

m = [ 

, -2  j 7 
- E E ( "  - J)( ;  - m).,;,,, x ' - ' " '  >'"-'- '~.  (3,s~ 

j =O m =~0 

Let us analyse the term containing/V,, ,  in Eq. (3.15). We have 

f v ~ x / a F, ( - I ) ' - 2 C U z  + 2) ~ 3x dx 

f 3 [ 1 ] . , / , " d x  = ( - l ) " " r ( u + l )  ~ (F , ) ""  " 

f v ~-~ x / dy = - I f 2  I'~ - k ( - l ) ' + l / - ' ( / . t +  1) : . . . . .  dx.  (3.16) 
k,! - t ( F ,  )"" I dx 
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where an integration by parts has been perfomed, and a total derivative dropped. From 

d F  = 0 we can express dy/dx  as 

n j 
dy Fr 1 L.~L..,~'--'~'-"(J-m)sjmYn-JxJ-'"-]" (3.17) 
dx F,. F" j=o ,,,=o 

Substituting Eq. (3.17) into (3. ! 6) one finds 

f ykx  I OF~ ( - l ) / ' + 2 F ( t t  + 2) (Fv)~ ~ * ~  0x dx 

= - I  I2 (l~) k ~ n  j _ _  _ _  ~"x i , - .~ ( i ~  4 -  I ) (3.18) 
j=0 m=0 

We finally use Eq. (3.18) in (3.15), apply F_,q. (3.11) to express $2~/:/) t in terms of  periods 
(0(t~+1) ~(u+l ) ,  and pull all terms containing "*k,t+,-2 to the left-hand side. After some lengthy 

but straightforward rearrangements one arrives at the following relation: 

[( '1  -"" 1 + (n - !) -- - -  sn-I.O k.l+n-2 
/ . t + l  / / + 1  

( ] .,,+ 1 1 + (n m 1) Sn-l.m k . l * n - m - 2  
m=t ~ q - 1  # + 1  

n-2 J { 1 t~T " } 
+ Z Z ,-7,-,-,-,-,--~1 [l(n - -  j )  + k(m - -  j ) ]  + (j - -  n)( j  - -  m) 

j =0 m=0 
f-,(p+l) 

X Sjm -~d k + n - j -  I . I - - j -m-  I" (3.19) 

We observe that all terms on the right-hand side of  Eq. (3.19) contain a value of  the second 

index smaller than I + n - 2, which is its value on the left-hand side. 

Once the above expressions have been obtained, the derivation of  the PF equations goes 

through as in the hyperelliptic case after setting/z = 0. The details will be omitted, but let 

us make some final observations. 

The assumption that infinity is not a branching point is in fact no stringent condition at 

all. One can always Moebius-transform the sphere S 2 in order to have x = oc E S 2 not 
lying below any one branching point. Here we have chosen to ensure that this property 

holds by imposing certain algebraic conditions on the coefficients Sire of the curve. The 

latter are sufficient, but not necessary conditions, that also turned out to be convenient 
when identifying the highest non-vanishing power of  x in F~,. in Eq. (3.14). Had we made 

a different choice for the coefficients sj,,, compatibly with the property of  infinity not a 
branching point, one could apply arguments similar to those given above in order to obtain 
a second recursion, like that in (3.19). 

The recursions (3.13) and (3.19) will certainly increase one index while reducing the 

other. However, the number of iterations needed to reduce all periods to those within a basic 
range R is necessarily finite. In our case this follows from the observation that F(x, y) 
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is of degree n in y, while it is of degree n - 1 (at most) in x. As Eqs. (3.13) and (3.19) 

are certain polynomial relations based on F(x ,  y) and F , , ,  the difference in their degrees 

ensures that the rates of growth in x and v can never compensate each other. Therefore. 

a repeated application of  these recursions will eventually reduce all indices into a set of 

irreducible values, i.e., into a basic range R. On more general grounds [131 one can argue 

that the space of periods (of differentials of the second kind) on a non-degenerate surface 

Z~, is 2g-dimensional. From this point of view, the recursion relations derived here exhibit 

this property very explicitly. 

It is also possible to argue that the matrix M ~j'l defined by Eq. (3.11) (after reducing all 

indices into R) will be invenible away from the singularities of  the curve. This follows from 

the same reasons as in the hyperelliptic case. 

One could wonder if the two recursions (3.13) and (3.19) are at all independent, since 

x and v are "constrained" by F(x,  y) = 0. Let us argue to the effect that they are indeed 

so. In the "constraint" F(x ,  y) = 0, decreasing powers of v go with increasing powers of 

x. This reflects itself in the fact that both relations (3.13) and (3.19) cause one index to 

increase while reducing the other one. Eq. (3.13) made a straight use of F(x. .vl  = 0 by 

simply solving for the highest power of v. Meanwhile, the recursion (3.19) first inserted 

/", ,. into the period integral, then integrated by parts under the dx sign. A total derivative 

was dropped during the process. None of these operations could have been accomplished 

by a simple use of F(x .  y) = 0. Incidentally, this mechanism also explains the choice of 

F,, in order to derive the second recursion, Eq. (3.19). The .r-derivative is accounted for 

in the partial integration, while the v-derivative has to match exactly the term F, in the 

denominator. The insertion of  higher derivatives ~"" ' F/~.r"~y '  under the period integral 

will not work, since total x-derivatives cannot be dropped if r > I, while the F, in the 

denominator cannot be matched if s > 1. 

4. Summary and conclusions 

We have given an elementary derivation of  a set of algebraic relations satisfied by (a large 

family of) period integrals on non-singular Riemann surfaces, both hyperelliptic and non- 

hyperelliptic. These relations can be used to obtain the Picard-Fuchs equations satified by 

the periods. Our approach makes virtually no use at all of  advanced mathematical techniques. 

The analysis is independent of the nature of  the moduli with respect to which variations are 

taken, and as such it can be applied to a variety of  physical and mathematical problems. We 

therefore hope these observations may be of  interest in both physics and mathematics. 

Acknowledgements 

This work has been supported by the TMR project ERBFMRXCT96-0045. Conversations 

with M. Matone, A. Mukherjee, S. Naculich, J. Nunes, H. Rhedin, H. Schnitzer and M. Tonin 

are gratefully acknowledged. 



346 J.M. lsidro/Journal of  Geometry and Physics 29 ~19991 334-346 

References 

[ I ] N. Seiberg, E. Witten, Monopole condensation and confinement in N = 2 supersymmetric Yang-Mills 
theory, Nucl. Phys. B 426 (1994) 19: Duality and chiral symmetry bre',ffdng in N = 2 supersymmetric 
QCD, Nucl. Phys. B 431 (1994)484. 

[2] A. Klemm. W. Lerche, S. Theisen, S. Yankielowicz. Simple singularities and N = 2 super,symmetric 
Yang-Mills theory, Phys. Lett. B 344 C 19951 169; 
P. Argyres. A. Faraggi, The vacuum structure and spectrum of N = 2 ,supcrsymmetric SU(N) gauge 
theory. Phys. Rev. Lett. 73 (19951 3931: 
A. Hanany, Y. Oz, On the quantum moduli `space of vacua of N = 2 super,symmetric SU(N,.) gauge 
theories, Nucl. Phys. B 452 (1995) 283: 
P. Argyres, M. Ples,ser, Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 
75 (1995) 1699: 
U. Danielsson, B. Sundborg, The moduli space and monodromie,s of N = 2 supersymmetric SO(2r + 1 ) 
Yang-Mills theory, Phys. Lett. B 358 (1995) 273: 
A. Brandhubcr, K. Landsteiner, On the monodromies of N = 2 ,supersymmetric Yang-Mills theory 
with gauge group SO(2n),  Phys. Lett. B 358 11995) 73: 
A. Hanany, On the quantum moduli `space of N = 2 supersymmetric gauge theories, Nucl. Phys. B 466 
(1996) 85. 

13] S. Katz. P. Mayr, C. Vafa, Mirror `symmetry and exact `solution o f4D N = 2 gauge theories - I, Adv. 
Theor. Math. Phys. 1 (1998) 53. 

141 M. Aganagic, M. Gremm, Exact `solutions for `some N = 2 super,symmetric SO(N) gauge theories with 
vectors and spinor,s, Nucl. Phys. B 524 (1998) 207. 

15] E. Witten, Solutions of four-dimen,sional field theories via M-theory, Nucl. Phys. B 500 (1997) 3. 
16] K. Land,steiner, E. L6pez, D. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, 

Nucl. Phys. B507 (1997) 197: 
K. Landsteiner, E. L6pez, New curves from brane,s. Nucl. Phys. B 516 (1998) 273. 

[7] A. Brandhuber, J. Sonnen,schein, S. Theisen. S. Yankielowicz, M-Theory and Seiberg-Witten curves: 
orthogon',d and symplectic groups, Nucl. Phys. B 504 (1997) 175. 

[8] A. Klemm, W. Lerchc, S. Thei,sen. Non-perturbative effective actions of N = 2 ,super,symmetric gauge 
theoric,s, Int. J. Mod. Phys. A 11 (19961 1929. 

191 M. Matonc. lnstantons and recursion relations in N = 2 Susy gauge theory, Phys. Lett. B 357 (1995) 
342. 

1101 P. Griffiths, Adv. in Math. 90 11969) 460; Bull. AMS 76 (1970) 228. 
I 111 P- Griffiths. J. Harris. Principles of Algebraic Geometry, Wiley/Inter,science. New York. 1978. 
[121 S. Pakuliak, A. Pcrclomov, Relation between hyperelliptic integrals. Mod. Phys. Lett. A 9 (1994) 1791. 
[ 13] H. Farkas, I. Kra, Ricmann Surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer, New 

York. 1991. 
1141 E Ferrari, J. Sobczyk, Mom~romy properties of the energy-momentum tensor on general algebraic 

curves: Operator formalism for bosonic beta-gamma fields on general algebraic curves. 
[ 151 P- Fr6, P. Soriani, The N = 2 Wonderland: From Calabi-Yau Manifolds to Topological Field Theories, 

World Scientific. Singapore, 1995. 
[16] J.M. lsidro, A. Mukherjee, J.P. Nunes. H.J. Schnitzer, A new derivation of the Picard-Fuch,s equations 

for effective N = 2 super Yang-Mills theories, Nucl. Phys. B 492 (1997) 647: On the Picard-Fuchs 
equations for massive N = 2 Seiberg-Witten theories, Nucl. Phys. B 502 (1997) 363. 

1171 W. Fuhon. Algebraic Topology, l,st ed., Graduate Texts in Mathematics, vol. 153, Springer. New York. 
1995. 


